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In soft condensed materials consisting of molecules with form anisotropy, the translation and rotation
interact with each other. Not only the shear and rotational viscosities but also the coupling viscosity are
necessary to theoretically describe the molecular motion under coupling between the different degrees of
freedom. In this paper, we report on the determination of all three viscosities with our experimental techniques.
We obtained the absolute values for p-n-hexyl-cyanobiphenyl �6CB� in the isotropic phase. The experimental
techniques used are the optical-beating spectroscopy of depolarized light scattering and the measurement of
birefringence induced by capillary waves. The coupling strength is given in the form 2�2 /�� for the former
and � /� for the latter; from this we determined the absolute values of �, �, and �. The coupling viscosity was
found to be responsible for the critical behavior of the coupling effect reported previously.
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I. INTRODUCTION

Shear flow in fluids consisting of anisotropic molecules,
disklike, rodlike, and so on, can induce cooperative molecu-
lar rotations. On the other hand, the rotational motion of
molecules causes macroscopic translational flow. Thus, the
coupling between the shear and orientation plays an impor-
tant role in the molecular motion. Some typical examples
have been found in liquid crystals, even in the isotropic
phase.

Three viscosity coefficients are usually defined to theo-
retically describe the molecular motion under the coupling
between the two degrees of freedom. One is the shear vis-
cosity � in the ordinary sense, and the others are the rota-
tional viscosity � with regard to the diffusion process of the
rotational momentum, and the coupling viscosity � con-
cerned with the energy exchange between translation and
rotation. While the value of � is easily measured with estab-
lished methods, no reliable values of � and � have yet been
acquired to our knowledge, because there have been no ef-
fective experimental techniques for their direct observation.
The purpose of this study is to establish a method to deter-
mine all three coefficients.

The results are available in the form of ratios between
these viscosities, and are different for each experiment. First,
we observed the power spectra of depolarized light scattering
�1,2�. Measuring the energy dissipation in the thermal equi-
librium state, we obtain the coupling constant defined as
C1�2�2 /��. Our optical beating system has a very high
frequency resolution, better than 1 kHz �3,4�, and the cou-
pling constant can be determined accurately even in the vi-
cinity of the isotropic-to-nematic phase transition tempera-
ture �5�. Second, we observed the flow birefringence induced
by the capillary waves �6�. The local orientational order in-
duced by the shear deformation underneath the surface of a
sample gives a coupling parameter defined as C2�� /�. The
system is shown to be effective for determining the absolute

value of C2 as well as the shear viscosity �. Finally, quanti-
tative estimations of � and � were also conducted.

II. COUPLING PARAMETERS

Three equations phenomenologically describe the motion
of molecular degrees of freedom in fluids. One is Euler’s
formula, determining the translational motion,

�v̇i = � j��ij − p�ij� , �1�

and the others are the constitutive equations that correlate the
forces with the conjugate fluxes. When a molecule has large
anisotropy in its shape, not only the shear stress and flow in
the ordinary sense but also the rotational torque and motion
must be considered. De Gennes proposed an additional term
in the equations to represent the coupling between the two
degrees of freedom, and succeeded in elucidating the ex-
traordinary dynamics near the isotropic-to-nematic phase
transition point �7�. We adopt the de Gennes expressions
with fluctuation forces as follows:

�ij = 2�eij + 2�Q̇ij + ��, �2�

	ij = �Q̇ij + 2�eij + �	, �3�

where the shear stress �ij and the rotational torque 	ij are
linear combinations of the time evolution of each order pa-
rameter; eij is the shear rate, and Qij is the orientational order
parameter. The free energy can be expanded in powers of Q
around Q=0, the torque 	 vanishes toward the virtual tran-
sition temperature T�, and we obtain 	ij =�F /�Q
�a�T−T��Qij, where a is a constant considered to charac-
terize the molecular shape. The random thermal forces driv-
ing each degree of freedom are described by �� and �	.

A. Light-scattering spectra of orientational fluctuations

The fluctuation of the dielectric constant brought about by
the thermal motion of various degrees of freedom in the ma-
terial is observed with a light-scattering experiment. The
thermal fluctuations drive the local shear flow and the rota-*hirano22@iis.u-tokyo.ac.jp
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tional motion of molecules evenly. The terms with respect to
the thermal fluctuation in Eqs. �2� and �3� are characterized
by ����t����0��= ��	�t��	�0��=kBT��t� and ����t��	�t���=0.

A spontaneous molecular orientation induces the micro-
scopic anisotropy of the refractive index, and the power
spectrum of the scattered light is related to the fluctuation of
the orientational order Qij through the expression Sij�q ,
�

=	dt e−i
t��Qij�q , t��Qij
� �q ,0��. We can measure the vertical-

to-vertical �VV� component via the polarized light scattering
and the vertical-to-horizontal �VH� component via the depo-
larized light scattering. The power spectra are given by �5�

SVV =
2�


2 + �2 , �4�

SVH =
2�


2 + �2 sin2 �

2
+

2�

2 + ��q2

�
�2

�1 − C1�
�
2 −

�q2

�
��2

+ 
2
� +
�q2

�
�1 − C1�

cos2 �

2
, �5�

where � is the geometrical scattering angle.
The spectrum of the VV component is a quasielastic

Lorentzian, and the half width at half maximum of the peak
is written as �=a�T−T�� /�, which corresponds to the in-
verse of the lifetime of the local orientation order. The VH
component, on the other hand, is related to the off-diagonal
factors of the dielectric tensor. A typical spectrum of Eq. �5�
shows a Lorentzian curve with another Lorentzian peak sub-
tracted. The outer peak stands for the process of orientational
relaxation appearing also in the VV spectrum, while the in-
ner dip represents the reorientation of molecules induced by
the coupled shear flow. We obtain the coupling constant in
the form C1=2�2 /�� consisting of three viscosity coeffi-
cients. Note here that C1 is symmetric with respect to � and
�. In the thermal equilibrium state, coupling phenomena oc-
cur between the two evenly driven order parameters of the
orientation and shear motion of the molecules. Accordingly,
the rotation induced by the shear flow through the coupling
is comparable to the original motion of the orientation.

B. Measurement of birefringence induced by capillary waves

In contrast to the observation of the thermal fluctuation of
molecular orientation, we can observe the irreversible energy
flow from one to the other degree of freedom in the measure-
ment of birefringence induced by capillary waves.

The detail of the birefringence measurement under the
shear flow induced by propagating capillary waves was re-
ported previously �6�; here, we give a brief account. The
oscillating vibration forced on a fluid surface excites the cap-
illary wave. The dispersion relation is given by 
2=k3 /�,
where  is the surface tension and � is the density. The
velocity potential � describing the wave propagating along
the x direction of a medium filling the half space of z�0 is
written as �8�

� =
A


k
ekze−i
t+�ik−��x, �6�

where A is the amplitude of the surface deformation and � is
the spatial damping constant of the capillary wave, which is
given by �=4�
 /3.

The intensity of the external shear deformation is much
larger than that of the thermal fluctuation, and we assume
���t��e−i
t and �	�t��0 in Eqs. �2� and �3�. A propagating
wave accompanies the shear deformation roughly to a depth
equal to the wavelength. Both the coupled orientation and
the directly excited shear flow should be written as Qij

�

=Qije
−i
t and eij

� =eije
−i
t, and Eq. �3� can be solved to give

Qij as

Qij =
C2

i
 − �
2eij . �7�

The coupling coefficient C2 is the ratio of � and � and inde-
pendent of �, since the one-way flow of energy from the
shear to the orientation modes is observed.

The absolute value of the orientation order Q is experi-
mentally determined through the relation Q=�n /�n0. Here,
�n0 is defined as the difference between the anisotropic re-
fractive indices for the ordinary and extraordinary rays in the
perfectly ordered state and its literature value of 0.303 �9� is
adopted. The anisotropy in the present experiment is ob-
tained from the output signal of the lock-in amplifier through
the equation

�n =
2�l

� tan �

Iout

I0
, �8�

where l=15 mm is the effective width of the capillary wave,
�=633 nm is the wavelength of the probe laser, �=3° is the
initial retardation of the beam, and I0 stands for the intensity
of the beam through the analyzer without the capillary wave,
which was measured in advance.

The absolute value of the shear rate caused by the surface
wave is determined through the following relation:

eij =
�

�z

��

�x
�=

�

�x

��

�z
� � 
Ake−�xekz. �9�

We can estimate the surface deformation A from the gradient
of the surface wave, which is determined by the deflection
angle of the probe light with an optical lever technique.
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Additionally, we obtain the following expression with re-
spect to the fluid dynamics:

�v̇i = − �ip + ��1 − C1
i


i
 − �
��i

2vi + ��t� , �10�

by eliminating �ij and Qij from Eqs. �1�–�3�. It is the Navier-
Stokes equation with relaxing shear viscosity, which includes
the effect of the shear-orientation coupling. The equation in-
dicates that the apparent shear viscosity shows a single re-
laxation, with relaxation frequency � and strength C1.

III. RESULTS AND DISCUSSION

In both the light-scattering and capillary-wave experi-
ments, cyanobiphenyl-type liquid crystals are the best candi-
dates for the samples because of their chemical and optical
toughness and their well-known physical properties. We used
p-n-hexyl-cyanobiphenyl �6CB� as the sample in this study
because it has the lowest isotropic-to-nematic �I-N� phase
transition temperature in the series of cyanobiphenyls. The
sample was purchased from Merck and used without further
purification. The sample cell was kept in a water jacket to
control the sample temperature within an accuracy of 0.1 K.
All the experiments were conducted for the isotropic phase
near the I-N transition point.

We precisely measured the temperature dependence of the
light scattering spectra for the VV and VH components. The
results for nCB samples �3�n�8� have been reported in
our previous paper �10�. Fitting the VV spectra with the the-
oretical Lorentzian curve of Eq. �4�, we obtained the orien-
tational relaxation frequency �, whose typical behavior for
6CB is shown in Fig. 1. The data obtained in the vicinity of
T� are also plotted in the inset of Fig. 1. They show good
linear dependence on temperature, and T� was determined as
the intercept on the abscissa; consequently � /2�=0.326�T
−T�� MHz and T�=301.2 K were obtained. Additionally,
the temperature dependence of � in a wide temperature range

gives information on the activation energy of the rotational
viscosity through the following expression:

� �
T − T�

exp�E�/kBT�
, �11�

where � is supposed to follow the Arrhenius law similarly to
other ordinary transportation coefficients. As a result of the
curve fitting, the activation energy E� was determined to be
E� /kB=2960 K.

We determined the coupling constant C1 by fitting the
observed VH spectra with Eq. �5�. The temperature depen-
dence of C1 thus obtained is shown in Fig. 2, where the inset
shows its logarithmic plot. The critical behavior of C1 vs
temperature is suggested from the power law shown in the
inset, and we obtained the relation C1=0.65�T /T�−1�0.32.

On the other hand, with the capillary-wave system, we
observe capillary-wave propagation and oscillatory flow bi-
refringence underneath the fluid surface. The temperature de-
pendence of the orientation order for a certain magnitude of
the shear deformation is then obtained. Figure 3 shows a
typical spatial profile of birefringence obtained at 0.5 mm
below the surface under the propagation of capillary waves
at 
=2��80 s−1. The values of the wave number k and the
damping constant � obtained as the fitting parameters of Eq.
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FIG. 1. Temperature dependence of the orientational relaxation
frequency obtained from the VV component of the light-scattering
spectra. The fitted curve represents the relation of Eq. �11�. The
inset shows the data near the I-N phase transition temperature.
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FIG. 2. Temperature dependence of both coupling coefficients
C1 ��� and C2 ���. The inset is a double-logarithmic plot, which
shows their critical behaviors toward T�.

� � �

� � �

� � �

� � �

� � �

� � � �

� � � �

� � � �

�
�
	

��
�

�
��
�
�

�����

� � � � � 
 � � � � � � 	 � � �

� � � � � �

� � � � � �

FIG. 3. Spatial profile of �n in the direction of the propagating
wave. The solid lines represent the fitted curves with the exponen-
tially damping oscillation.
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�6� gave those of the surface tension  and the shear viscos-
ity �. They are listed in Table I as functions of temperature.

Figure 4 shows an Arrhenius plot of the shear viscosity �,
in which we can verify that the obtained values show the
temperature dependence of �=�0 exp�E� /kBT� with a single
activation energy of E� /kB=4370 K, and the limiting shear
viscosity of �0=1.27�10−8 Pa s.

To determine C2, we simultaneously measured the abso-
lute amplitude of the surface wave and the coupled orienta-
tion order underneath, cooling down the sample temperature
gradually from 305 toward 302.2 K, which is the actual
phase transition temperature to the nematic phase. Substitut-
ing the obtained values of Qij and eij and the values of � and
T� obtained by the light-scattering measurement into Eq. �7�,
we determined another coupling coefficient C2. The result is
shown in Fig. 2 together with C1. Here, we can see the criti-
cal behavior of C2 toward T�, which is similar to that of C1.
We determined the critical exponent as the slope of the loga-
rithmic plot shown in the inset and obtained the relation C2
=1.07�T /T�−1�0.17.

Noticing the descriptions of C1 and C2, we naturally con-
sider that the coupling viscosity is responsible for the critical
behavior; the critical exponent of C1 ���2� is twice the mag-
nitude of that of C2 ���2�. We can then successfully deter-
mine the unique values of all the viscosities. Figure 5 shows
the temperature dependences of the shear, rotation, and cou-
pling viscosities, and the inset shows the critical behavior of
� together with the noncritical ones of � and �.

Here, we determined the absolute value of each viscosity
including its temperature dependence due to the critical and
the Arrhenius behavior. In our previous study, we experimen-
tally found that C1 is almost independent of the temperature
in a wide range far above T� �2,10�. We concluded from this
that the activation energy for �, �, and � should satisfy the

relation E�= �E�+E�� /2. The activation energies E� and E�

are determined by the light-scattering and capillary-wave ex-
periments, respectively, and then we can uniquely estimate
E� from the above relation. The expressions for the three
viscosities are given by

� = 1.27 � 10−8 exp�4370/T� Pa s,

� = 4.15 � 10−7 exp�2960/T� Pa s,

� = 4.08 � 10−8�T/T� − 1�0.16 exp�3670/T� Pa s.

The orientation coupled with shear occurs more readily in
the nematic than in the isotropic phase, and therefore it
seemed reasonable that the coupling must become strong
close to the nematic state. Our present data, however, show
that the coupling coefficients C1 and C2 critically decrease
and the coupling viscosity � is the unique origin of their
critical behaviors. The result indicates that the energy trans-
fer via the coupling process decreases with decreasing tem-
perature and becomes anomalously small in the neighbor-
hood of the phase transition temperature.

This is probably due to the temperature dependence of the
coherence length of the local orientation order �11�, which is
written as �=�0�T /T�−1�−0.5. While � is approximately as
long as three molecular lengths at the highest temperature in
our light-scattering experiment, it becomes several times as
long at the critical region near T�. The spontaneous close
packing of anisotropic molecules for saving energy surpasses
the disordering from the entropic effect within a domain. It is
obvious that the coupling effect originates from anisotropy in
the molecular shape or polarization. Instead, in the vicinity
of the phase transition temperature, the temporal domain
with the size � plays the role of a molecule because of the
cooperative orientation in the domain. The anisotropy still
remains in a small domain consisting of a few molecules;
however, the form of the domain becomes spherelike with
increasing size. The coupling viscosity would be expected to
be meaningless for a spherical ensemble of molecules.
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FIG. 4. Temperature dependence of the shear viscosity of 6CB
determined by the damping of the capillary wave. The slope of the
straight line gives the activation energy of �.

FIG. 5. Temperature dependence of the absolute values of the
shear viscosity ���, the rotational viscosity ���, and the coupling
viscosity ���. The inset shows the logarithmic plot representing the
critical behavior of �.

TABLE I. Experimental values of the surface tension and the
shear viscosity determined and used in this study.

T �K� 307.5 306.1 305.0 304.0 303.0 302.3

 �mN/m� 35.7 35.1 34.6 34.6 34.1 34.1

� �mPa s� 18.9 20.0 21.3 22.4 23.0 24.2

T. HIRANO AND K. SAKAI PHYSICAL REVIEW E 77, 011703 �2008�

011703-4



Another plausible mechanism for decreasing � is increase
in the domain boundary. Energy loss through coupling �e.g.,
friction� might occur on the interface between neighboring
domains. It is supposed that fewer domains in a certain vol-
ume possess less boundary area and thus lose less energy via
the coupling process.

Nevertheless, we have no clear idea of the critical expo-
nent of �, determined to be 0.16 at present. The value may
be a universal constant describing the I-N phase transition.

We will propose a further and more detailed model to clarify
its physical meaning.
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